Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664301

ABSTRACT

Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1ß and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.

2.
Front Mol Neurosci ; 17: 1341886, 2024.
Article in English | MEDLINE | ID: mdl-38390431

ABSTRACT

Background and purpose: Calmodulin (CaM) levels exhibit significant elevation in the brain tissue of rodent and cell line models infected with prion, as well as in the cerebrospinal fluid (CSF) samples from patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD). However, the status of CSF CaM in patients with genetic prion diseases (gPrDs) remains unclear. This study aims to assess the characteristics of CSF CaM in Chinese patients presenting four subtypes of gPrDs. Methods: A total of 103 CSF samples from patients diagnosed with T188K-gCJD, E200K-gCJD, D178N-FFI, P102L-GSS were included in this study, along with 40 CSF samples from patients with non-prion diseases (non-PrDs). The presence of CSF CaM and 14-3-3 proteins was assessed using Western blots analysis, while levels of CSF 14-3-3 and total tau were measured using enzyme-linked immunosorbent assays (ELISAs). Statistical methods including multivariate logistic regression were employed to evaluate the association between CSF CaM positivity and relevant clinical, laboratory, and genetic factors. Results: The positive rates of CSF CaM were significantly higher in cases of T188K-gCJD (77.1%), E200K-gCJD (86.0%), and P102-GSS (90.9%) compared to non-PrD cases (22.5%). In contrast, CSF CaM positivity was slightly elevated in D178N-FFI (34.3%). CSF CaM positivity was remarkably high in patients who tested positive for CSF 14-3-3 by Western blot and exhibited high levels of total tau (≥1400 pg/ml) as measures by ELISA. Multivariate logistic regression analysis confirmed a significant association between CSF CaM positivity and specific mutations in PRNP, as well as with CSF 14-3-3 positivity. Furthermore, the diagnostic performance of CaM surpassed that of 14-3-3 and tau when analyzing CSF samples from T188K-gCJD and E200K-gCJD patients. Conclusion: Western blot analysis reveals significant variations in the positivity of CSF CaM among the four genotypes of gPrD cases, demonstrating a positive correlation with 14-3-3 positivity and elevated tau levels in CSF.

3.
ACS Chem Neurosci ; 14(20): 3772-3793, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37769016

ABSTRACT

Galectin 3 (Gal-3) is one of the major elements for activating microglia and mediating neuroinflammation in some types of neurodegenerative diseases. However, its role in the pathogenesis of prion disease is seldom addressed. In this study, markedly increased brain Gal-3 was identified in three scrapie-infected rodent models at the terminal stage. The increased Gal-3 was mainly colocalized with the activated microglia. Coincidental with the increased brain Gal-3 in prion-infected animals, the expression of brain trigger receptor expressed in myeloid cell 2 (TREM2), one of the Gal-3 receptors, and some components in the downstream pathway also significantly increased, whereas Toll-like receptor 4 (TLR4), another Gal-3 receptor, and the main components in its downstream signaling were less changed. The increased Gal-3 signals were distributed at the areas with PrPSc deposit but looked not to colocalize directly with PrPSc/PrP signals. Similar changing profiles of Gal-3, the receptors TREM2 and TLR4, as well as the proteins in the downstream pathways were also observed in prion-infected cell line SMB-S15. Removal of PrPSc replication in SMB-S15 cells reversed the upregulation of cellular Gal-3, TREM2, and the relevant proteins. Moreover, we presented data for interactions of Gal-3 with TREM2 and with TLR4 morphologically and molecularly in the cultured cells. Stimulation of prion-infected cells or their normal partner cells with recombinant mouse Gal-3 in vitro induced obvious responses for activation of TREM2 signaling and TLR4 signaling. Our data here strongly indicate that prion infection or PrPSc deposit induces remarkably upregulated brain Gal-3, which is actively involved in the microglia activation and neuroinflammation mainly via TREM2 signaling.


Subject(s)
Prion Diseases , Prions , Mice , Animals , Prions/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Toll-Like Receptor 4/metabolism , Microglia/metabolism , Neuroinflammatory Diseases , PrPSc Proteins/metabolism , Prion Diseases/metabolism , Brain/metabolism , Signal Transduction
4.
Mol Neurobiol ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37726499

ABSTRACT

Mitochondrial dysfunction is one of the hallmarks in the pathophysiology of prion disease and other neurodegenerative diseases. Various metabolic dysfunctions are identified and considered to contribute to the progression of some types of neurodegenerative diseases. In this study, we evaluated the status of glycolysis pathway in prion-infected rodent and cell models. The levels of the key enzymes, hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) were significantly increased, accompanying with markedly downregulated mitochondrial complexes. Double-stained IFAs revealed that the increased HK2 and PFK distributed widely in GFAP-, Iba1-, and NeuN-positive cells. We also identified increased levels of AMP-activated protein kinase (AMPK) and the downstream signaling. Changes of AMPK activity in prion-infected cells by the AMPK-specific inhibitor or activator induced the corresponding alterations not only in the downstream signaling, but also the expressions of three key kinases in glycolysis pathway and the mitochondrial complexes. Transient removal or complete clearance of prion propagation in the prion-infected cells partially but significantly reversed the increases of the key enzymes in glycolysis, the upregulation of AMPK signaling pathway, and the decreases of the mitochondrial complexes. Measurements of the cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) showed lower OCR and higher ECAR in prion-infected cell line, which were sufficiently reversed by clearance of prion propagation. Those data indicate a metabolic reprogramming from oxidative phosphorylation to glycolysis in the brains during the progression of prion disease. Accumulation of PrPSc is critical for the switch to glycolysis, largely via activating AMPK pathway.

5.
Mol Neurobiol ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37548852

ABSTRACT

Interleukin 3 (IL-3) plays an important role in hematopoiesis and immune regulation, brain IL-3/IL-3R signaling has been shown to involve in the physiological and pathological processes of a variety of neurodegenerative diseases, but its role in prion diseases is rarely described. Here, the changes of IL-3/IL-3R and its downstream signaling pathways in a scrapie-infected cell line and in the brains of several scrapie-infected rodent models were evaluated by various methods. Markedly decreased IL-3Rα were observed in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cell model, which showed increased in the brain samples collected at early and middle stage of infection. The IL-3 levels were almost unchanged in the brains of scrapie-infected mice and in the prion-infected cell line. Morphological assays identified close co-localization of the increased IL-3Rα signals with NeuN- and Iba1-positive cells, whereas co-localization of IL-3 signals with NeuN- and GFAP-positive cells in the scrapie-infected brain tissues. Some downstream components of IL-3/IL-3R pathways, including JAK2-STAT5 and PI3K/AKT/mTOR pathways, were downregulated in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cells. Stimulation of recombinant IL-3 on the cultured cells showed prion that the prion-infected cells displayed markedly more reluctant responses of JAK2-STAT5 and PI3K/AKT/mTOR pathways than the normal partner cells. These data suggest that although prion infection or PrPSc accumulation in brain tissues does not affect IL-3 expression, it significantly downregulates IL-3R levels, thereby inhibiting the downstream pathways of IL-3/IL-3R and blocking the neuroregulatory and neuroprotective activities of IL-3.

6.
3 Biotech ; 13(2): 54, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36685319

ABSTRACT

This study developed a new single-tube multiplex real-time PCR method for detecting toxigenic C. difficile directly from fecal samples using tcdA, tcdB, cdtB, and internal gene tpi as targets, which could be performed on kinds of polymerase chain reaction device including point-of-care testing (POCT), with improved detection efficiency. The specificity, sensitivity, and repeatability of each gene was evaluated using 69 C. difficile isolates and 74 fecal samples. Results were compared with established PCR, qPCR, and ELISA methods. Interspecies specificity was 100% based on six common intestinal pathogens (Escherichia coli, Enterococcus Faecium, Enterococcus faecalis, Clostridium perfringens, Bacteroides fragilis, Clostridium botulinum). The lower detection limit (LDL) for tcdA, tcdB, and cdtB with pure C. difficile DNA was 101,100, and 100 copies/µL, respectively, the coefficients of variation among different experimental batches and within each experimental batch were both less than 3%, which shows that this method has strong repeatability. And the LDL of fecal DNA was 5 × 100, 5 × 103, and 5 × 102 colony-forming units (CFU)/g, respectively. In addition, the efficiency for detection of tcdA was compared with established PCR and real-time PCR methods, demonstrating high consistency (98.4%) and similar sensitivity. ELISA was used to confirm inconsistent results, which were identical with our method. The sensitivity and specificity for detecting toxigenic C. difficile in fecal samples were 96.49% and 94.12% compared with the toxigenic culture (TC). This method effectively identified the toxigenic and non-toxigenic strains with high specificity, sensitivity, and repeatability, and could reduce the false positive rate of tcdA, and accurately identify the typical Asian strain RT017, making it potentially contribute to the surveillance of CDI in China. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03434-6.

7.
Front Cell Dev Biol ; 10: 844378, 2022.
Article in English | MEDLINE | ID: mdl-35646890

ABSTRACT

Metabotropic glutamate receptor subtype 5 (mGluR5) is a G-protein-coupled receptor found widely in the central nervous system. It has been involved in the development and progression of some neurodegenerative diseases, but its role in prion diseases is rarely described. In this study, the changes of mGluR5 and its downstream signaling pathways in prion-infected cell line SMB-S15 and the brains of scrapie-infected experimental rodents were evaluated by various methodologies. We found the levels of mGluR5 were significantly increased in a prion-infected cell line SMB-S15 and the cultured cells transiently express an abnormal form PrP (Cyto-PrP). Using immunoprecipitation tests and immunofluorescent assays (IFA), molecular interaction and morphological colocalization between PrP and mGluR5 were observed in the cultured cells. We identified that the (GPCRs)-IP3-IP3R-Ca2+ pathway was activated and the levels of the downstream kinases p38, ERK, and JNK were increased in SMB-S15 cells. After treated with mGluR5 antagonist (MTEP) or the removal of prion replication by resveratrol in SMB-S15 cells, the upregulations of mGluR5 and the downstream kinases were restored in a certain degree. Moreover, increased mGluR5 contributes to the cell damage in prion-infected cells. Contrarily, the levels of mGluR5 in the brains of several scrapie-infected rodent models were decreased at terminal stage. IFA of the brain sections of scrapie-infected rodents demonstrated that the signals of mGluR5 were preferentially colocalized with the NeuN-positive cells, accompanying with severe neuron losses in Nissl staining, which might be a reason for the decrease of mGluR5. Our data indicate the different aberrant alterations of mGluR5 and the downstream signaling pathways during prion infection in vivo and in vitro.

8.
Phys Chem Chem Phys ; 20(37): 24379-24388, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30215640

ABSTRACT

In this study, using dissipative particle dynamics simulations coupled with the stochastic reaction model, we investigate the polymerization-induced polymer aggregation process and the polymer aggregation-enhanced polymerization process in a binary solution, by simply tuning the solubility of the solvent to one species of copolymerization. Our simulations indicate that it is a complicated interplay of the copolymerization on the formation of aggregates, namely, on one hand the polymerization may induce the aggregation of one species; on the other hand it has an effect of mixing the two species together. We also find that the polymerization process basically follows the first order reaction kinetics. With the increase of insolubility of B species in the solution, it continuously deviates from the first order reaction kinetics. In the symmetric copolymerization system, we find that the dispersity of copolymers monotonically decreases with the increase of reaction probability. This counterintuitive result can be understood via the comparison of diffusion-controlled kinetics and reaction-controlled kinetics. In the asymmetric system, for systems with preferential copolymerization, the mass distribution shapes are Gaussian-like with certain peaks. For comparison, for systems with preferential homopolymerization, the mass distribution shape shows an obviously bimodal form. This study helps to better understand the cooperative competition between the reaction dynamics and the diffusion dynamics during the preparation of copolymer materials, and could act as a guide to better design and improve the copolymerization technologies in laboratories and in industry.

9.
J Phys Chem B ; 115(46): 13441-8, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-21985058

ABSTRACT

We develop a mesoscale nonequilibrium simulation model to study the effect of steady shear on the hierarchical self-assembly of soft disklike particles in dilute solutions. By properly tuning shear rates and solvent conditions, soft disklike particles can self-assemble into flexible threads and bundle-like structures along the flow direction. Shear flow facilitates the self-assembly of soft disklike particles into one-dimensional long threads along the flow direction; however, it suppresses the formation of flexible bundles from the threads while decreasing the solvent quality. The relatively well-defined bundle structures along the flow direction can only be obtained when the solvent condition becomes even worse. Our study elucidates how the solvent condition and shear rate can be utilized to control the shear-induced self-assembled structures, which would enable designed nanofabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...